Multi-class Boosting with Class Hierarchies
نویسندگان
چکیده
We propose AdaBoost.BHC, a novel multi-class boosting algorithm. AdaBoost.BHC solves a C class problem by using C− 1 binary classifiers defined by a hierarchy that is learnt on the classes based on their closeness to one another. It then applies AdaBoost to each binary classifier. The proposed algorithm is empirically evaluated with other multi-class AdaBoost algorithms using a variety of datasets. The results show that AdaBoost.BHC is consistently among the top performers, thereby providing a very reliable platform. In particular, it requires significantly less computation than AdaBoost.MH, while exhibiting better or comparable generalization power.
منابع مشابه
Appendix: Sharing Features in Multi-class Boosting via Group Sparsity
In this document we provide a complete derivation for multi-class boosting with group sparsity and a full explanation of admm algorithm presented in the main paper. 1 Multi-class boosting with group sparsity We first provide the derivation for multi-class logistic loss with 1,2-norm. We then show the difference between our boosting with 1,2-norm and 1,∞-norm. We then briefly discuss our group s...
متن کاملA Direct Approach to Multi-class Boosting and Extensions
Boosting methods combine a set of moderately accurate weak learners to form a highly accurate predictor. Despite the practical importance of multi-class boosting, it has received far less attention than its binary counterpart. In this work, we propose a fully-corrective multi-class boosting formulation which directly solves the multi-class problem without dividing it into multiple binary classi...
متن کاملSemi-Supervised Boosting for Multi-Class Classification
Most semi-supervised learning algorithms have been designed for binary classification, and are extended to multi-class classification by approaches such as one-against-the-rest. The main shortcoming of these approaches is that they are unable to exploit the fact that each example is only assigned to one class. Additional problems with extending semisupervised binary classifiers to multi-class p...
متن کاملFast Training of Effective Multi-class Boosting Using Coordinate Descent Optimization
We present a novel column generation based boosting method for multi-class classification. Our multi-class boosting is formulated in a single optimization problem as in [1, 2]. Different from most existing multi-class boosting methods, which use the same set of weak learners for all the classes, we train class specified weak learners (i.e., each class has a different set of weak learners). We s...
متن کاملRobust Multi-View Boosting with Priors
Many learning tasks for computer vision problems can be described by multiple views or multiple features. These views can be exploited in order to learn from unlabeled data, a.k.a. “multi-view learning”. In these methods, usually the classifiers iteratively label each other a subset of the unlabeled data and ignore the rest. In this work, we propose a new multi-view boosting algorithm that, unl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009